Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Quaternary AlxInyGa1-x-yN layers deposited by pulsed metal-organic vapor-phase epitaxy for high efficiency light emission

Identifieur interne : 002656 ( Main/Repository ); précédent : 002655; suivant : 002657

Quaternary AlxInyGa1-x-yN layers deposited by pulsed metal-organic vapor-phase epitaxy for high efficiency light emission

Auteurs : RBID : Pascal:11-0142182

Descripteurs français

English descriptors

Abstract

Quaternary AlInGaN quantum wells in GaN barriers were grown by metal-organic vapor-phase epitaxy. Changing to a growth sequence with pulsed metal-organic supply leads to structures with enhanced photoluminescence efficiencies. The amount of material was varied, resulting in AlInGaN layer thicknesses between nominally 1.5 and 10 nm. We have analyzed the material properties by X-ray diffraction (XRD) as well as photoluminescence (PL) spectroscopy. The observed XRD-spectra and the PL intensity show the high quality of the deposited material. By analyzing the PL spectra, we have found an energy shift of the resonance lines from 2.65 to 3.33 eV with decreasing well thickness. We attribute this shift mainly to the presence of internal electric fields in the AlInGaN/GaN heterostructures. Power-dependent and time-resolved PL experiments confirm this observation. By properly adjusting the material composition, we could achieve polarization field compensation of the quaternary QW structures. Also, first luminescence experiments on ternary InGaN QW embedded in quaternary barrier material were performed.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0142182

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Quaternary Al
<sub>x</sub>
In
<sub>y</sub>
Ga
<sub>1-x-y</sub>
N layers deposited by pulsed metal-organic vapor-phase epitaxy for high efficiency light emission</title>
<author>
<name sortKey="Jetter, M" uniqKey="Jetter M">M. Jetter</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institut für Halbleiteroptik und Funktionelle Grenzflächen and Research Center SCoPE, University of Stuttgart, Allmandring 3</s1>
<s2>70569 Stuttgart</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>70569 Stuttgart</wicri:noRegion>
<wicri:noRegion>Allmandring 3</wicri:noRegion>
<wicri:noRegion>70569 Stuttgart</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="W Chter, C" uniqKey="W Chter C">C. W Chter</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institut für Halbleiteroptik und Funktionelle Grenzflächen and Research Center SCoPE, University of Stuttgart, Allmandring 3</s1>
<s2>70569 Stuttgart</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>70569 Stuttgart</wicri:noRegion>
<wicri:noRegion>Allmandring 3</wicri:noRegion>
<wicri:noRegion>70569 Stuttgart</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Meyer, A" uniqKey="Meyer A">A. Meyer</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institut für Halbleiteroptik und Funktionelle Grenzflächen and Research Center SCoPE, University of Stuttgart, Allmandring 3</s1>
<s2>70569 Stuttgart</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>70569 Stuttgart</wicri:noRegion>
<wicri:noRegion>Allmandring 3</wicri:noRegion>
<wicri:noRegion>70569 Stuttgart</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Feneberg, M" uniqKey="Feneberg M">M. Feneberg</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Institut für Quantenmaterie, Ulm University, Albert-Einstein-Allee 45</s1>
<s2>89081 Ulm</s2>
<s3>DEU</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Tübingen</region>
<settlement type="city">Ulm</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Thonke, K" uniqKey="Thonke K">K. Thonke</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Institut für Quantenmaterie, Ulm University, Albert-Einstein-Allee 45</s1>
<s2>89081 Ulm</s2>
<s3>DEU</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Tübingen</region>
<settlement type="city">Ulm</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Michler, P" uniqKey="Michler P">P. Michler</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institut für Halbleiteroptik und Funktionelle Grenzflächen and Research Center SCoPE, University of Stuttgart, Allmandring 3</s1>
<s2>70569 Stuttgart</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>70569 Stuttgart</wicri:noRegion>
<wicri:noRegion>Allmandring 3</wicri:noRegion>
<wicri:noRegion>70569 Stuttgart</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0142182</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0142182 INIST</idno>
<idno type="RBID">Pascal:11-0142182</idno>
<idno type="wicri:Area/Main/Corpus">003502</idno>
<idno type="wicri:Area/Main/Repository">002656</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0022-0248</idno>
<title level="j" type="abbreviated">J. cryst. growth</title>
<title level="j" type="main">Journal of crystal growth</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Compensation</term>
<term>Electric field effects</term>
<term>Gallium nitride</term>
<term>Growth mechanism</term>
<term>Heterostructures</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium nitride</term>
<term>Layer thickness</term>
<term>Light emission</term>
<term>Luminescence</term>
<term>MOVPE method</term>
<term>Nanostructured materials</term>
<term>Optical properties</term>
<term>Organometallic compounds</term>
<term>Photoluminescence</term>
<term>Quantum wells</term>
<term>Resonance</term>
<term>Time dependence</term>
<term>VPE</term>
<term>XRD</term>
<term>Yttrium nitride</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Méthode MOVPE</term>
<term>Emission optique</term>
<term>Puits quantique</term>
<term>Nanomatériau</term>
<term>Semiconducteur III-V</term>
<term>Composé III-V</term>
<term>Mécanisme croissance</term>
<term>Composé organométallique</term>
<term>Photoluminescence</term>
<term>Epaisseur couche</term>
<term>Diffraction RX</term>
<term>Résonance</term>
<term>Effet champ électrique</term>
<term>Hétérostructure</term>
<term>Nitrure d'yttrium</term>
<term>Nitrure de gallium</term>
<term>Nitrure d'indium</term>
<term>Dépendance temps</term>
<term>Compensation</term>
<term>Luminescence</term>
<term>Propriété optique</term>
<term>Epitaxie phase vapeur</term>
<term>AlInGaN</term>
<term>GaN</term>
<term>InGaN</term>
<term>8115G</term>
<term>8115K</term>
<term>8107S</term>
<term>8107</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Quaternary AlInGaN quantum wells in GaN barriers were grown by metal-organic vapor-phase epitaxy. Changing to a growth sequence with pulsed metal-organic supply leads to structures with enhanced photoluminescence efficiencies. The amount of material was varied, resulting in AlInGaN layer thicknesses between nominally 1.5 and 10 nm. We have analyzed the material properties by X-ray diffraction (XRD) as well as photoluminescence (PL) spectroscopy. The observed XRD-spectra and the PL intensity show the high quality of the deposited material. By analyzing the PL spectra, we have found an energy shift of the resonance lines from 2.65 to 3.33 eV with decreasing well thickness. We attribute this shift mainly to the presence of internal electric fields in the AlInGaN/GaN heterostructures. Power-dependent and time-resolved PL experiments confirm this observation. By properly adjusting the material composition, we could achieve polarization field compensation of the quaternary QW structures. Also, first luminescence experiments on ternary InGaN QW embedded in quaternary barrier material were performed.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-0248</s0>
</fA01>
<fA02 i1="01">
<s0>JCRGAE</s0>
</fA02>
<fA03 i2="1">
<s0>J. cryst. growth</s0>
</fA03>
<fA05>
<s2>315</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Quaternary Al
<sub>x</sub>
In
<sub>y</sub>
Ga
<sub>1-x-y</sub>
N layers deposited by pulsed metal-organic vapor-phase epitaxy for high efficiency light emission</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>15th International Conference on Metalorganic Vapor Phase Epitaxy (ICMOVPE-XV)</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>JETTER (M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>WÄCHTER (C.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MEYER (A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>FENEBERG (M.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>THONKE (K.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>MICHLER (P.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>CANEAU (Catherine)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>KUECH (Tom)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Institut für Halbleiteroptik und Funktionelle Grenzflächen and Research Center SCoPE, University of Stuttgart, Allmandring 3</s1>
<s2>70569 Stuttgart</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institut für Quantenmaterie, Ulm University, Albert-Einstein-Allee 45</s1>
<s2>89081 Ulm</s2>
<s3>DEU</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>254-257</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13507</s2>
<s5>354000194603110570</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>19 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0142182</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of crystal growth</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Quaternary AlInGaN quantum wells in GaN barriers were grown by metal-organic vapor-phase epitaxy. Changing to a growth sequence with pulsed metal-organic supply leads to structures with enhanced photoluminescence efficiencies. The amount of material was varied, resulting in AlInGaN layer thicknesses between nominally 1.5 and 10 nm. We have analyzed the material properties by X-ray diffraction (XRD) as well as photoluminescence (PL) spectroscopy. The observed XRD-spectra and the PL intensity show the high quality of the deposited material. By analyzing the PL spectra, we have found an energy shift of the resonance lines from 2.65 to 3.33 eV with decreasing well thickness. We attribute this shift mainly to the presence of internal electric fields in the AlInGaN/GaN heterostructures. Power-dependent and time-resolved PL experiments confirm this observation. By properly adjusting the material composition, we could achieve polarization field compensation of the quaternary QW structures. Also, first luminescence experiments on ternary InGaN QW embedded in quaternary barrier material were performed.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A15G</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A15K</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A07S</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A07Z</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Méthode MOVPE</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>MOVPE method</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Método MOVPE</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Emission optique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Light emission</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Emisión óptica</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Puits quantique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Quantum wells</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Mécanisme croissance</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Growth mechanism</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Mecanismo crecimiento</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Composé organométallique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Organometallic compounds</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Epaisseur couche</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Layer thickness</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Espesor capa</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>XRD</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Résonance</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Resonance</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Effet champ électrique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Electric field effects</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Hétérostructure</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Heterostructures</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Nitrure d'yttrium</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Yttrium nitride</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Ytrio nitruro</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Nitrure de gallium</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Gallium nitride</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Galio nitruro</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Nitrure d'indium</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Indium nitride</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Indio nitruro</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Dépendance temps</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Time dependence</s0>
<s5>29</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Compensation</s0>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Compensation</s0>
<s5>30</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Luminescence</s0>
<s5>31</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Luminescence</s0>
<s5>31</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Propriété optique</s0>
<s5>32</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Optical properties</s0>
<s5>32</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Epitaxie phase vapeur</s0>
<s5>33</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>VPE</s0>
<s5>33</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>AlInGaN</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>GaN</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>InGaN</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>8115G</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>8115K</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>8107S</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>8107</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>094</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>International Conference on Metalorganic Vapor Phase Epitaxy (ICMOVPE-XV)</s1>
<s2>15</s2>
<s3>Incline Village, NV USA</s3>
<s4>2010-05-23</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002656 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 002656 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:11-0142182
   |texte=   Quaternary AlxInyGa1-x-yN layers deposited by pulsed metal-organic vapor-phase epitaxy for high efficiency light emission
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024